
Design and Power Consumption Analysis of a
NB-IoT End Device for Monitoring Applications

Sofia Paiva
DTx - Digital Transformation Colab

Campus de Azurém
Guimarães, Portugal

sofia.paiva@dtx-colab.pt

Sérgio Branco
Department of Industrial Electronics

Algoritmi Center, University of Minho
Braga, Portugal

asergio.branco@gmail.com

Jorge Cabral
Department of Industrial Electronics

Algoritmi Center, University of Minho
Braga, Portugal

jcabral@dei.uminho.pt

Abstract—As the number of connected "things" increases at a
very fast pace, the Internet of Things (IoT) ecosystem expands
and nowadays covers a vast number of application domains,
providing a large portfolio of solutions that are based on an
evolving system, from the physical sensors (end devices) to
the Cloud. When designing battery-powered end devices, previ-
ous research has identified several challenges such as wireless
connectivity, battery lifetime, embedded intelligence, security
and privacy concerns, and costs (modem unit, communication
link and maintenance, among others). This paper focuses on
the design and development of battery-powered IoT devices
in which NarrowBand Internet of Things (NB-IoT) is used to
provide seamless wireless connection, reduce power consumption,
enhance communication coverage and minimize maintenance
costs. The paper describes a typical use case where an Arm®

Cortex®-M0+ and its low-power modes are exploited in order
to design a low-power end device. Two different approaches,
bare-metal and freeRTOS, for implementing the end device
firmware are compared. Additionally, performance tests prove
that increasing the clock frequency of the processor does not
bring any advantage to this kind of applications.

Keywords—IoT, low-power design, NB-IoT, power consump-
tion

I. INTRODUCTION

Nowadays Internet of Things (IoT) is a well known concept
that is even being associated with specific application domains
such as Industrial IoT (IIoT), Cellular IoT (CIoT), Internet
of Medical Things (IoMT), among others. IoT applications
are emerging at a fast pace, reflecting on the 26 billion of
connected devices in 2019, a number that is predicted to grow
by 178% in the next 5 years [1].

Some of these applications, such as remote utility metering
and agriculture monitoring, due to safety restrictions or limited
physical access, require a battery-powered end device. Thus,
it is necessary to have special attention to power consumption,
since it influences the device’s autonomy and may have high
impact on maintenance costs.

For long range coverage and low-power transmissions, the
Low Power Wide Area Network (LPWAN) technologies are
the right choice. There are two classes from two different
spectrum: unlicensed spectrum technologies and licensed spec-
trum technologies. The former can operate within a Industrial,
Scientific and Medical (ISM) frequency band and each oper-
ator must assure the infrastructure necessary to transmit the

information (e.g. LoRa, Sigfox). The latter is supported by
standards such the Long Term Evolution (LTE) and Global
System for Mobile Communications (GSM), and by the cur-
rent cellular infrastructure. There is even an effort to reduce
hardware costs and to simplify network access mechanisms,
targeting the embedding of the SIM card into the module
hardware itself [2].

Still, the communication link is one of the most power
consuming tasks of a wireless end device. On the licensed
spectrum technologies, specially with NarrowBand Internet
of Things (NB-IoT), the reduction of power consumption is
achieved by reducing the physical layer of the communication
link (when compared to the cellular physical layer), while
maintaining the security, scalability and link reliability pro-
vided by the LTE network.

NB-IoT was introduced by the Third Generation Partnership
Project (3GPP), being a LPWAN technology conceived to
use the existent cellular network for low data rate, low-cost
applications. It has three operation modes: in-band, guard-
band, and standalone, regarding the transmission carrier and
resource blocks. The mode used is determined by the service
provider based on the cell site and base station that supports
the end device. NB-IoT’s advantages are [3]:

• Power optimization features such as Power Saving Mode
(PSM) and extended idle-mode discontinuous reception
(eDRX);

• Deep indoor coverage mainly because of its 180 kHz
bandwidth;

• Low-cost NB-IoT radio modules (modem);
• LTE network security and scalability.

There are several research works on NB-IoT applications
in various application domains, taking advantage of its low-
power consumption and LTE network benefits [4]–[10]. How-
ever, the end devices designed used either Arm® Cortex®-M3
or M4 microcontrollers, or Arduino or Raspberry Pi boards as
control units.

In this paper the design of an end device based on a
Cortex®-M0+ for low-power, low-cost, and low-performance
NB-IoT applications is presented, focusing on the impact of
the different firmware coding approaches and exposing the
various design choices towards a low-power end device.



The remaining of this paper is structured as follows. §II
focus on design principles for low-power NB-IoT applications.
In §III the end device structure and its functionalities are
described generally. Then there is an hardware description
and on the software the bare-metal firmware is opposed to
the RTOS-based one.

This paper concludes by presenting results from initial tests
to the end device (in §IV) and identifying future research
topics in §V.

II. SYSTEM DESIGN PRINCIPLE

Currently there are two ways of integrating NB-IoT tech-
nology into an end device:

• using only the NB-IoT modem, programming its em-
bedded application processor to establish the sensor’s
interface;

• using the NB-IoT modem exclusively for communication
and add a low-power Microcontroller Unit (MCU) to run
the application and establish interface with the end device
sensors.

The first option for NB-IoT integration is still very limited
and suitable solutions for custom low-power applications are
difficult to find. In [11], the Qualcomm solution using this
method was presented (MDM9206), which is supported by
two different chip manufacturers (Quectel [12] and SIMCom
[13]) and has integrated cloud device agents. The end device
is based on a Cortex®-A7 application processor and runs
ThreadX RTOS. Nordic Semiconductor also introduced a
System-in-Package (nRF9160) as the integrated modem solu-
tion. The SiP has a Cortex®-M33 application processor and has
its own development kit aiming to allow an easy and fast de-
velopment [14]. Although this approach has clear advantages
for fast prototyping, it has some disadvantages related to power
consumption and data link costs, since more processing power
is required from the module (one hardware solution fits all)
and property cloud agents and web micro-services are required
that leads to more maintenance and communication data link
costs. For custom, low-power and minimal costs, neither of
the above solutions seems flexible enough, so in this paper the
second option was chosen. There are a lot more offers on the
market for standalone NB-IoT modem solutions. This market
is mainly dominated by Quectel. Other manufacturers include
u-blox, Qualcomm, Nordic Semiconductors and SIMCom.
Although the use of a standalone modem requires an additional
microcontroller unit (MCU), it allows for more flexibility in
terms of peripherals and MCU selection, allowing a faster
custom design for development teams with a particular MCU
skills. The communication with the NB-IoT modem is done
via UART using standard AT commands, given by the modem
manufacturers.

For the design here presented, the Quectel BC66 module
was selected based on power consumption, accessibility and
documentation. Targeting low-power, the MCU selected was
the STM32L071K8 which uses a Cortex®-M0+. It is well
suited for small monitoring applications that do not require
intensive processing or high data rates.

Regarding the MCU’s peripherals, there are some design
considerations to have in mind when targeting develop-
ment time, reduced Bill-of-Materials (BoM), and low-power,
namely avoiding analog sensors. The ADC peripheral is one of
the most power consuming ones and can jeopardize the battery
lifetime if left continuously powered-on [15]. Even though
low-power MCUs such as the STM32L0 series are prepared
to reduce this power consumption to a minimum, it might still
be preferred to choose a sensor with digital output like I2C or
SPI, since it can help reduce the sensor’s energy consumption
as well as offering other functionalities, such as an interrupt
signal when the sensing value crosses a given threshold. In
order to respect this design choice, all sensors chosen for the
demonstration system have I2C interface, allowing the use of a
single I2C peripheral to interface all the end device integrated
sensors.

On MCU configuration there is also a relevant aspect
to consider: the MCU system clock. It is well known that
higher clock frequencies result in higher power consumption,
but faster execution. On the contrary, by slowing the clock
frequency, power consumption is reduced at the cost of slower
execution. With the system design here exposed, it is the
authors intention to test if, for a wake-up – execute – sleep –
repeat application, it is better to execute fast, sleep more or
execute slow, sleep less in terms of overall power consumption.

Another design constraint to have in mind is the approach
to develop the end device firmware. There are two approaches
for developing the code in the end device MCU (abstractly
speaking):

• Bare-metal approach – where the code runs directly on
top of the MCU, respecting the coding flow;

• RTOS-based approach – where there is a scheduling
mechanism that allows tasks to run in pseudo-parallelism.

The first allows for a more controlled application flow and
optimization, at the cost of being inflexible when it comes
to design changes. The second allows for a more flexible
application and theoretical better use of resources, by intro-
ducing pseudo-parallelism into the execution. However, it adds
a considerable layer of overhead and may not be advantageous
for an application as simple as the one considered.

In order to get to the bottom of this question, two firmware
applications were developed for the end device design, one
as a bare-metal application and the other as a RTOS-based
application.

Lastly, it is equally important to choose the communication
protocol. Since the NB-IoT standard supports either Internet
Protocol (IP) or non-IP protocols, the choice of a commu-
nication protocol impacts both power consumption and data
security/reliability.

Non-IP protocols can be SMS or other NB-IoT Non-
IP Data Delivery (NIDD). User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP) are the supported
communication protocols over IP communication. For an IoT
application, the UDP protocol assures more power savings
in comparison to TCP, but it can not guarantee the message
delivery.



Fig. 1. System Diagram

On the application level, there is also compatibility with
the Constrained Application Protocol (CoAP) and Message
Queuing Telemetry Transport (MQTT) standards for Machine-
to-Machine (M2M) communications. The former can be de-
ployed seamlessly either with UDP transport layer or NIDD,
and is being recommended as the preferable standard to use
with NB-IoT [16]–[18].

III. SYSTEM STRUCTURE AND FUNCTION

The proposed end device is represented by the diagram in
figure 1. The end device conceived for working with 1.8V
sensors and MCU, has a NB-IoT modem that allows the direct
connection to a 3.6V battery.

The network architecture presented in figure 2 illustrates
the process of a simple application for monitoring some
environmental conditions with a NB-IoT end device, pre-
process the data and securely send the information to a Cloud
server, so that it can be available on access platforms.

Due to the fact that the data collected from the nodes is
being sent to a Cloud, it is essential to ensure that the com-
munication protocol provides security & privacy measures.
Moreover, communication protocols must create the minimum
overhead possible to ensure a reduced transmission time.

The ArchNet [19] protocol uses a symmetric-asymmetric
encryption process to ensure that the data is not readable
by any third-party. The data serialization step ensures that
the data is understandable by any programming language and
program. Furthermore, the use of decentralized microservices
and database (MongoDB), allows a more secure and efficient
way of storing data and process it. The communication NB-
IoT device – base station is guaranteed by the NB-IoT standard
which can use features from LTE if not working in standalone.

Fig. 2. NB-IoT Network Architecture

Then, from the base station to the server the communication
is done through the internet, using a IPSEC Tunnel to assure
data confidentiality, scalability and security.

A. Hardware Design

The end device has three main components: the MCU;
the NB-IoT modem; and the sensors. The MCU is a
STM32L071K8U6 (32 MHz Arm® Cortex®-M0+, 64 KB
Flash, and 20 KB RAM), chosen by its small footprint and
reduced number of peripherals, making it almost custom for
the proposed use case. It controls the whole system, gathering
the sensors’ data, pre-processing it and communicating the
monitored information through the NB-IoT modem.

The NB-IoT modem selected was the Quectel BC66 that
has a power supply range between 2.1V and 3.63V, allowing
direct connection to the battery. Additional hardware for the
NB-IoT modem includes a nano SIM card (since eSIM is not
yet available for deployment) and an antenna.

Regarding the sensors, four different sensors for humidity
and temperature, light/luminosity, methane gas (CH4), and
acceleration were selected. All sensors have low-power con-
sumption, low-power modes, and digital communication in-
terface (I2C). Some also have programmable interrupt signals
that allow to detect anomalies on monitored data without
requiring constant reading requests and processing from the
end device MCU.

For powering it all up, a 3.6V Lithium-Thionyl Chloride
(Li-SOCl2) battery was chosen due to its pulse capability and
low self discharge. A Low-Dropout (LDO) regulator with low
quiescent current was included in order to regulate the voltage
to 1.8 V.

The hardware components selected can be found in table I.

B. Software Design

As mentioned before, in order to make a comparative
study of performance and consumption, two firmware coding
approaches were used to execute the functionality identified
in figure 3.

The purpose is to acquire data, pre-process it and send
the information about the monitored parameters to the Cloud



TABLE I
HARDWARE SPECIFICATION

MCU Core Power Supply Consumption

STM32
L071K8

Arm®

Cortex®

-M0+
1.8V - 3.6V

140 µA/MHz @ run
0.8 µA @ stop mode
(w/ RTC)
0.65 µA @ standby
(w/ RTC)

Modem Core Power Supply Consumption

Quectel
BC66

Mediatek
MT2625 2.1V - 3.63V

3.5 µA @ PSM
240 µA @ Idle
(eDRX = 81.92 s)
110 mA @ LTE
Cat NB1

Sensor Interface Power Supply Low Power Modes
Hum.Temp. SPI; I2C 1.71V - 3.6V yes

Light I2C 1.6V - 3.6V yes
CH4 I2C 1.75V - 3.6V yes

Accel. SPI; I2C 1.72V - 3.6V yes
Battery Type Nominal Voltage Capacity
LSH14 Li-SOCl2 3.6V 5.8 Ah

server periodically, while taking advantage of low-power
modes to reduce average power consumption. If it is not
possible to send the information at a given time, the end
device shall try to reconnect to the base station at a latter time
(minutes). If it can not connect at all, the end device enters
in standby, a deep sleep state, waiting for some time (hours)
before rebooting and retry to communicate again. This gives
time to detect, on the Cloud server side, that this particular
end device is inactive and possibly requires attention.

1) Bare-Metal approach: The bare-metal application fol-
lowed the flow exactly as exposed in figure 3, having three
main layers: the hardware of the STM32L071K8U6, a hard-
ware abstraction layer (HAL), and the application, as depicted
in figure 4.

The hardware comprises the registers for interaction with
peripherals and memory. Instead of writing directly to registers
on the application layer, STMicroelectronics (ST) offers a
HAL with functions that allow a more fluid manipulation of
the hardware resources. In order to provide even more porta-
bility to the application, a low level module was developed so
that the application doesn’t get restricted to the HAL offered
by ST.

The application layer has its own levels, depicted in figure 4
schematic. The bottom level comprises the system interaction,
the modem and the specific sensors interaction. The system
controls the Real-Time Clock (RTC) configuration and read-
ing, and the power control. The modem module deals with the
specificity of the NB-IoT modem selected (Quectel BC66),
such as AT commands, and flow of execution for initialization
and configuration. Each sensor specific module deals with the
initialization, configuration and reading of the specified sensor,
since their working mechanisms are different (proprietary for
each sensor). The top level allows a certain level of abstraction,
where the transmission and sensors modules are included.
The former deals with transmission protocol, gathering the
required information and requesting the modem module to

Fig. 3. System Flowchart

send it in the correct format. The latter, centralizes the sensors
information, allowing mass initialization and configuration, as
well as unified organization of information from each sensor.

In this way, the main module can control the application
flow in an abstracted way, so that its only concern is the correct
execution of application procedures.

2) RTOS approach: There are several RTOSs available
for IoT applications, both open-source as well as propriety.
After analyzing some of the most known RTOSs, such as
ThreadX and embOS (proprietary), and µC/OS-III, mbedOS
and freeRTOS (open-source), the authors selected freeRTOS.



Fig. 4. System Architecture

Fig. 5. Graphic Tasks Abstraction

According to [20], freeRTOS is not the fastest RTOS in most
bench marked parameters, but its performance is comparable
with the other open-source RTOSs analyzed. The choice of
freeRTOS can be easily justified by its community support,
previous development experience and seamless porting to the
selected MCU using the ST Cube tool.

The freeRTOS application developed respects the same
layers depicted in figure 4, except that it introduces a new
layer, close to the hardware, representative of the freeRTOS
kernel, that manages scheduling and context switching of
tasks.

The functionalities offered by the end device firmware and
its synchronization are depicted in figure 5, where a graphic
tasks abstraction of the implementation in the RTOS context
is provided. There are tasks and functions responsible for con-
figuring and collect data from the sensors (left side of figure),
which in turn are accessed by a manager using synchronization
mechanisms such as semaphores. On the communication scope
(right side of figure) there are also tasks responsible for
initializing and configuring the NB-IoT connection to the base
station and Cloud server, allowing the manager task to request
configuration information and sending datagrams with respect
to the appropriate synchronization mechanisms (semaphores
and queues in this case).

The use of freeRTOS enables the mentioned pseudo-
parallelism, making it possible to initialize the sensors "at
the same time" the modem is being initialized, since there
is a standstill between the transmission of an AT command
and the modem response. In this time, modem tasks are

Fig. 6. NB-IoT Custom PCB

blocked waiting for the response and other tasks can execute,
or the MCU can be put into a shallow sleep mode for power
consumption reduction.

IV. PRELIMINARY RESULTS

Based on the diagram depicted in figure 1, a NB-IoT end
device custom Printed Circuit Board (PCB) was designed and
fabricated (figure 6). The design of the PCB allows to measure
current consumption at five different circuitry test points:

1) All modules, from the point of view of the battery,
overall end device power consumption (dark blue in
figure 6);

2) MCU and sensors, from the point of view of the battery
(including the LDO) (blue in figure 6);

3) NB-IoT modem only (communications power consump-
tion) (light blue in figure 6);

4) Sensors only, from the point of view of the LDO (red
in figure 6);

5) MCU only, from the point of view of the LDO (orange
in figure 6).

The measurements were taken on subsystems 2 and 3
separately for better analysis. For this measurements, a Digital
Multimeter (DMM) was used, the modem was supplied from
an external power supply (3.5 V) when not being measured
its consumption.

The comparison in figure 7 opposes the current consumption
of the end device with a bare-metal firmware to the current
consumption of the end device with a RTOS-based firmware.
Both ran at the same clock frequency, in the same hardware
conditions, the application has identical timings for execution,
except between the two dashed lines showed in both graphs.
This time is variable and depends on how fast the modem is
able to connect to the network. When the energy consumption
drops it means that the MCU has been put into stop mode and
is waiting for a RTC wakeup. For tests purposes, this wakeup
time was set to 10 seconds.



Fig. 7. Current Consumption of Bare-Metal (left) and RTOS-based (right)
Firmware @ 1.048 MHz

Fig. 8. Current Consumption at Different Clock Frequencies

From the results, there are two important phases to analyze:
the use of the RTOS compensates at the initialization phase,
having less 20 µA of average current consumption than the
bare-metal implementation, but at the cyclic repetition, the
bare-metal firmware achieves less 5 µA of average current con-
sumption than the RTOS-based one. Measurements for other
clock frequencies sustain these results, the higher the clock
frequency, the larger the difference of current consumption
between the two implementations at both phases.

The current consumption difference between the four clock
frequencies selected for experimental measurements can be
seen in figure 8. The average execution time and current
consumption per peak (active time after wakeup) are listed
in table II. It shows that using the MCU’s maximum clock
frequency (32 MHz) only decreases execution time by 10%
while the power consumption is increased by 2900%, when
compared to the values obtained at a lower clock frequency
of 1.048 MHz.

One of the STM32L071K8’s low-power features is the
option to select the core supply voltage. For clock frequencies
below 4.194 MHz it is possible to run the core with a 1.2V
supply voltage instead of the 1.8V. The impact on current
consumption of using this feature in lower clock frequencies
can be observed in figure 9. It can represent savings of more
than 345 µA on the average consumption, which for low-power

TABLE II
AVERAGE EXECUTION TIME AND CURRENT CONSUMPTION AT

DIFFERENT CLOCK FREQUENCIES

1.048 MHz 4.194 MHz 16 MHz 32 MHz

Execution
Time (s) 2.2427 2.1110 2.0711 2.0691

Current
Consumption (mA) 0.2751 1.0538 4.9571 8.3573

Fig. 9. Current Consumption with (left) and without (right) Low Power
Configurations

sensitive applications is significant.
Table III presents the code and RAM size in bytes for

each firmware. This is the necessary allocation of memory in
order to implement the same application using different coding
approaches. As expected, the RTOS-based firmware requires
more memory, this is directly related to the initialization of
tasks, queues and kernel.

During the experimental assessment, a problem was identi-
fied in the design related to the quiescent current consumption
of the selected LDO. On an isolated measurement, it was found
that the sensors have an average consumption of 2 µA and the
MCU in stop mode has an average consumption below 1 µA,
thus the verified 24 µA average current consumption when the
system is in standby was attributed mainly to the quiescent
current of the selected LDO.

As for the NB-IoT modem current consumption measure-
ments, figure 10 presents one execution cycle from the start of
the flowchart in figure 3. The modem was configured with no
eDRX and PSM set to 2 hours with active-time of 10 seconds
(time in which it is idle). However, for tests purposes, the
MCU wakeup time was set to 5 minutes, so that a data package
could be sent within the measurement time. The results show
the drastic change in current consumption, dropping from an
average of 17 mA in full functioning to an average of 560 µA
in idle and mere 5 µA average when in PSM.

When testing the responsiveness of the modem, a problem
with the previous selected battery was found, as it could
not suffice the peak currents observed when establishing
communication. This motivated to change from a LS17500
3.6 Ah battery to a LSH14 5.8 Ah battery, not because of the



TABLE III
CODE SIZE IN BYTES FOR EACH FIRMWARE

Code RO RW ZI

Bare-Metal 30184 324 24 4304

RTOS 39452 364 216 14816

Fig. 10. NB-IoT Modem’s Current Consumption with 20 Seconds Idle Time.
Full measured cycle on the right and transition from idle to PSM close-up on
the left

increased capacity, which theoretical allows for a longer life
time, but because of its pulse capability, supporting up to 2 A
peak of current for 0.1 seconds.

V. CONCLUSION

In this paper the design and development of a low power IoT
end device with seamless wireless communications supported
by NB-IoT was presented. The preliminary experimental re-
sults obtained allowed to conclude that selecting a lower
clock frequency, for the end device MCU, is a better solution
for reducing power consumption in the proposed IoT use
case. The main reason for this to happen is because the
application is much more dependent on the time taken by other
hardware modules (sensors’ measurement time and modem’s
communication link) than on exhaustive computations during
a given task. So faster code throughput won’t result in a
significant decrease of the time required to return the end
device to sleep mode.

Based on the results, it is also possible to conclude that the
bare-metal application can offer a better energy consumption
profile than the RTOS-based one. Besides allowing a better
memory management, the bare-metal firmware has a coding
flow more straightforward than the RTOS, thus making it bet-
ter for troubleshooting when in development phase. However,
code maintenance is more difficult, it is less flexible to change
parts of the application and it is more difficult to include more
power savings mechanisms, such as entering shallow sleep
when waiting for external responses, which could translate on
extending the end device battery lifetime even further.

Regarding battery lifetime, considering the LDO quiescent
current of 24 µA previously explained, the end device reaches
a 576 µAh per day, on a two-times-a-day update of the
sensor values at 1.048 MHz clock frequency. When adding the

communications contribution, based on the measured NB-IoT
modem current consumption and with the same two-times-a-
day update frequency, which gives a rough average of 483
µAh per day, the overall battery lifetime is 15 years.

Although these results are already promising for the per-
spective of a 10-year battery life target, they can be further
optimized by means of software and hardware changes. A
change to a nano-quiescent current LDO would significantly
reduce the current consumption during the sleep phase of the
system. On the software level, some changes to the application
could also help reduce power consumption while increasing
measurements resolution, by waking up just the MCU and
the sensors more frequently, and wake up more sporadically
just to send the data collected. Further analysis on current
consumption between using the LSI or the LSE to drive the
RTC clock need to be made, as well as using UDP or TCP
for data communication.

So far, it is plausible for a NB-IoT design to achieve the
announced 10-year battery life, provided that both software
and hardware are power consumption aware, and identified
high consumption modules within the system can be further
improved in order to minimize their impact.

VI. ACKNOWLEDGMENT

This work has been supported by NORTE-06-3559-FSE-
000018, integrated in the invitation NORTE-59-2018-41, aim-
ing the Hiring of Highly Qualified Human Resources, co-
financed by the Regional Operational Programme of the North
2020, thematic area of Competitiveness and Employment,
through the European Social Fund (ESF).

The authors would like to thank the support team of NOS
Comunicações for providing the NB-IoT connection and server
service, and for technical support throughout the installation.

REFERENCES

[1] A. Bera, “80 Insightful Internet of Things Statistics - 2020 Edition,” feb
2019. [Online]. Available: https://safeatlast.co/blog/iot-statistics/#gref

[2] Huawei, “Huawei demonstrates world-first nuSIM implementation,”
nov 2019. [Online]. Available: https://www.huawei.com/uk/press-events/
news/uk/2019/huawei-demonstrates-world-first-nusim-implementation

[3] Deutsche Telekom AG, “NarrowBand IoT The Game Changer for The
Internet of Things,” Tech. Rep. October, 2017.

[4] K. Changyun, “Design of Safety System for Kitchen Based on NB-
IOT,” 2019 3rd International Conference on Robotics and Automation
Sciences (ICRAS), pp. 74–78, 2019.

[5] Y. Cheng, “Design of Air Quality Monitoring System Based on,” 2019
IEEE International Conference on Power, Intelligent Computing and
Systems (ICPICS), pp. 385–388, 2019.

[6] W. Jianxin, S. Junpan, and H. Ruyuan, “Design of a Smart Independent
Smoke Sense System Based on NB-IoT Technology,” 2019 International
Conference on Intelligent Transportation, Big Data & Smart City
(ICITBS), pp. 397–400, 2019.

[7] D. Xiong, Y. Chen, X. Chen, M. Yang, and X. Liu, “Design of Power
Failure Event Reporting System Based on NB-IoT Smart Meter,” 2018
International Conference on Power System Technology, POWERCON
2018 - Proceedings, no. 201804270000855, pp. 1770–1774, 2019.

[8] S. Duangsuwan, A. Takarn, and P. Jamjareegulgarn, “A Development on
Air Pollution Detection Sensors based on NB-IoT Network for Smart
Cities,” ISCIT 2018 - 18th International Symposium on Communication
and Information Technology, no. Iscit, pp. 313–317, 2018.



[9] S. Yang, S. Khan, X. Chuanxi, Z. Yifeng, and P. Shengchun, “Design
and Realization of a Buoy for Ocean Acoustic Tomography in Coastal
Sea based on NB-IoT Technology,” OCEANS 2019 - Marseille, pp. 1–4,
2019.

[10] W. Manatarinat, S. Poomrittigul, and P. Tantatsanawong, “Narrowband-
Internet of Things (NB-IoT) System for Elderly Healthcare Services,”
2019 5th International Conference on Engineering, Applied Sciences
and Technology (ICEAST), pp. 1–4, 2019.

[11] N. Naik, “Cellular IoT — MDM9206 Modem and New LTE for
IoT SDK - Qualcomm Developer Network,” jul 2018. [Online].
Available: https://developer.qualcomm.com/blog/cellular-iot-mdm9206-
modem-and-new-lte-iot-sdk

[12] Quectel, “Quectel QuecOpen.” [Online]. Available: https://www.quectel.
com/technology/quecopen.htm

[13] SIMCom, “9206 IOT SDK.” [Online]. Available: https://www.simcom.
com/service-2.html

[14] Nordic Semiconductor, “nRF9160 - Nordic Semiconductor,” 2018.
[Online]. Available: https://www.nordicsemi.com/Products/Low-power-
cellular-IoT/nRF9160#infotabs

[15] STMicroelectronics, “Ultra low power Application note STM32L0,”
STMicroelectronics, Tech. Rep., 2014.

[16] T-Mobile, “Narrowband IoT Solution Developer Protocols,” Tech. Rep.,
2019.

[17] M. Stusek, K. Zeman, P. Masek, J. Sedova, and J. Hosek, “IoT Protocols
for Low-power Massive IoT: A Communication Perspective,” Inter-
national Congress on Ultra Modern Telecommunications and Control
Systems and Workshops, vol. 2019-October, no. November, 2019.

[18] K. K. Nair, A. M. Abu-Mahfouz, and S. Lefophane, “Analysis of the
narrow band internet of things (NB-IoT) technology,” 2019 Conference
on Information Communications Technology and Society, ICTAS 2019,
pp. 1–6, 2019.

[19] S. Branco, “Archnet,” Apr. 2020. [Online]. Available: https://doi.org/
10.5281/zenodo.3763813

[20] R. R. Belleza and E. P. De Freitas, “Performance study of real-time
operating systems for internet of things devices,” IET Software, vol. 12,
no. 3, pp. 176–182, 2018.


