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Abstract—An automatic algorithm to identify Standard
Denavit-Hartenberg parameters of serial manipulators is pro-
posed. The method is based on geometric operations and dual
vector algebra to process and determine the relative transforma-
tion matrices, from which it is computed the Standard Denavit-
Hartenberg (DH) parameters (ai, αi, di, θi). The algorithm
was tested in several serial robotic manipulators with varying
kinematic structures and joint types: the KUKA LBR iiwa R800,
the Rethink Robotics Sawyer, the ABB IRB 140, the Universal
Robots UR3, the KINOVA MICO, and the Omron Cobra 650.
For all these robotic manipulators, the proposed algorithm was
capable of correctly identifying a set of DH parameters. The
algorithm source code as well as the test scenarios are publicly
available.

Index Terms—Kinematic identification, Denavit-Hartenberg
parameters

I. INTRODUCTION

Kinematic identification refers to the determination of a
minimal number of parameters that completely describe the
position and orientation of a manipulator’s structure as a func-
tion of its joint positions. Many models have been proposed to
characterize a kinematic structure: the Standard and Modified
Denavit-Hartenberg (DH) convention [1], the Hayati model
[2], the Stone and Sanderson’s S-model [3] and recent models
based on Product of Exponentials (POE) [4], [5].

The Denavit-Hartenberg model is still the most used con-
vention to represent the robot’s kinematic structure. It provides
a guaranteed minimal representation, an intuitive method to
determine its parameters and most importantly, it works on
straight-forward linear algebra whose matrices are computa-
tionally fast to solve.

This work has been supported by FCT – Fundação para a Ciência e Tec-
nologia within the Project Scope: UID/CEC/00319/2019, the FCT scholarship
grant: SFRH/BD/86499/2012 and the DTx-Colab.

Independent of the convention used, there is a consistent
problem with robots, particularly serial structures that causes
repeatable but inaccurate movements. This problem derives
from manufacturing and assembly tolerances, wear and tear,
or permanent bending due to fatigue. The listed error sources
are reflected on the real kinematic model parameters, and on
the gap to the nominal parameter values. Kinematic errors
are especially impactful in serial manipulators where the
parameter deviations propagate through the kinematic chain.
Industrial robot calibration methods, particularly the ones
based on kinematic parameters, are compartmentalized in four
steps, i) modelling, ii) measurement, iii) identification, and
compensation [6], [7]. The proposed algorithm is primarily
related to the parameter identification step as a sub-type of
planar calibration methods [8], [9].

Another common problem to users that need to model
kinematic structures of robotic manipulators relates to the
inaccessibility of the model parameters, which are usually han-
dled internally by the controller. Even if the robot is properly
calibrated, the user has no access to the kinematic parameters
other than the nominal values in the documentation.

In this paper, we propose an algorithm for DH parameter
identification based on geometry and dual vector algebra for
any type of serial robot. The algorithm splits into two parts,
the first called “feature identification”. In this part, the robot’s
end-effector position is acquired after sequential movements
in each joint. The acquired set of points are processed to
determine the motion axis of each joint, an idea originally
explored by Stone [3] to determine the S-model parameters.
The second part, “parameter extraction”, applies dual vector
algebra to calculate the intermediate coordinate frames be-
tween consecutive joints, and then to extrapolate the Standard
DH parameters. The dual vector algebra concept was applied



by Ketchel and Larochelle [10] to detect collisions between
robotic links modeled after cylindrical bodies.

To the best of our knowledge, the proposed algorithm is the
first capable of correctly identifying a set of DH parameters
for a wide range of differentiated robots, representing various
kinematic typologies. The method was tested against serial
robotic manipulators with: revolute and prismatic joints, in-
trinsically redundant and non-redundant structures, joints with
aligned motion axis, shoulder and wrist offsets, as well as with
curved wrists. It corrects and extends previous work by [11],
[12], which fails to deliver a correct set of DH parameters
for manipulators other than the industrial serial 6-DoF type.
The source code of the algorithm here proposed is available
at https://github.com/neuebot/Kinematic-Calibration.

The proposed method was tested with several robot models
with variable structures and joint dispositions including a
KUKA LBR iiwa R800, a Rethink Robotics Sawyer, an ABB
IRB 140, a Universal Robots UR3, a KINOVA MICO and
a SCARA-type Cobra 650 by Omron. A correct set of DH
parameters was identified for all.

The paper is organized as follows. Section II describes the
process of identifying the motion axis for a generic prismatic
or revolute joint. In section III it is explained how to determine
the relative transformation frames between joints from which
the DH parameters are extracted. Section IV presents the
results of the proposed method for different types of serial
manipulators.

II. FEATURE IDENTIFICATION

The objective of this section is to determine, for each joint
of the manipulator, its motion axis: a) for a revolute joint -
the plane and center of rotation; b) for a prismatic joint - the
sliding vector and a contained point. These values constitute
the input to the proposed algorithm.

To identify the motion axis of each joint, we move each
robot joint separately and acquire the position of a point
(p = (x, y, z)T ) at the robot’s end-effector relative to the
robot’s base reference frame. Either p is determined directly
from the robot controller, which allows for the extraction of
the controller’s intrinsic kinematic parameters, or p is deter-
mined using an external tracking sensor to achieve kinematic
calibration. For each joint, from the base to the end-effector,
a movement in joint space is executed, which translates to a
circular or linear trajectory of the tracked point (p) in Cartesian
space depending on the type of the joint.

For consistent and reliable results, our method imposes the
following requirements:

1) the reference frame attached to the first joint should be
aligned with the base reference frame;

2) the joint motion must be in the positive direction during
the motion acquisition;

3) the acquired position measurement step should be 3 to
4 orders of magnitude less than the nominal distance of
the generated trajectory;

4) the acquired point must be contained in the plane defined
by the normal to the last joint axis that contains the end-
effector position, see Fig. 1.

Fig. 1: Example of acquired point (p) contained in the plane
defined by the last joint axis (nn) and the position of the
flange. The acquired point must not be contained in the line
that passes through the last joint axis, i.e. p 6= p∅.

The last condition assures that the tracked point trajectory
generated from the last joint is not reduced to a single point. In
addition, for the method here proposed, we recommend that:

1) each joint travels more than a third of its range;
2) each joint travels at identical and constant velocities -

to guarantee a similar number of samples and uniform
distribution of end-effector positions.

After acquiring the generated trajectories of p for each
isolated joint, one should end up with n trajectories (n
equates to the number of joints), each with m number of
points corresponding to the tracked point measurements, P ={
pj ∈ R3, j ∈ {1, . . . ,m}

}
.

Since the process is iterative to each joint, we explain in the
following section how it applies to a generic prismatic and a
revolute joint.

A. Prismatic Joints

A prismatic joint motion will generate a linear trajectory
in workspace. The motion axis vector can be determined by
finding the best fitting line to the set of trajectory points.
Line and plane fitting are problems commonly addressed with
Orthogonal Distance Regression. The goal is to minimize the
distances between the set of points and the geometric element.
Let the position of the best fitting line be represented by a point
c belonging to the line, and let the vector n be the direction
vector. The orthogonal distance (dj) between each point (pj)
and the line is,

dj = ‖(pj − c)− ((pj − c) · n)n‖, (1)

assuming,

c =
1

m

m∑
j=1

pj . (2)

and without the loss of generality n to be a unit vector (i.e.
‖n‖ = 1). For clarity, consider the vector norm ‖•‖ to be the
Euclidean norm.

https://github.com/neuebot/Kinematic-Calibration


The best fitting line minimizes the square sum of orthogonal
distances between the line and the points,

min
n

m∑
j=1

dj
2

equivalent to,

min
n

 m∑
j=1

‖pj − c‖2 −
m∑
j=1

((pj − c) · n)2


that can be written as,

min
n

(
‖M‖F − ‖Mn‖2

)
,

where M is the matrix of 3×m mean-centered points, i.e.,

M =

p1 − c
...

pm − c

 (3)

and ‖•‖F is the Frobenius norm. Thus, the problem translates
to finding,

n := arg max
n∈R3
‖n‖=1

‖Mn‖2. (4)

One efficient approach to deal with this problem relies on
Singular Value Decomposition (SVD) to determine the domi-
nant direction of data. Factorizing M into the product of three
matrices M = UΣVT , where U and V are unitary matrices
whose columns are orthonormal and Σ is a diagonal matrix
with positive and real singular values listed in decreasing order
(σ1 ≥ σ2 ≥ σ3 ≥ 0). It follows that,

‖Mn‖2 = ‖UΣVTn‖2 (5)

and given that U is an unitary matrix, the following is also
true,

‖Mn‖2 = ‖ΣVTn‖2.

Considering h = VTn, the function (4) is equivalent to,

n := arg max
n∈R3
‖n‖=1

[
(σ1h1)2 + (σ2h2)2 + (σ3h3)2

]
. (6)

Provided the decreasing order of singular values, the function
is maximized for hmax = [1, 0, 0]T , which follows that,

n := Vhmax. (7)

The tail-arrow direction of n is also important because it
relates to the direction of the axis. As one of the imposed
requirements for the calibration was to record a linear joint
motion in the positive direction, one can guarantee the correct
tail-arrow direction of n by,

n =

{
n, if n · (pm × p1) ≥ 0

−n, if n · (pm × p1) < 0
. (8)

B. Revolute Joints

One logical approach to calculate the plane and center of
rotation is to determine the best fitting tri-dimensional circle to
the trajectory, from which it is straightforward to extrapolate
the plane and center of rotation. The first step consists in
determining the best fitting plane to the set of points P. To
keep a consistent notation, let this plane be represented by its
normal vector n, and a plane contained point c determined
from the centroid of the set of points, similar to the previous
subsection. The orthogonal distances between the plane and
the set of points are,

dj = (pj − c) · n. (9)

The problem of finding the best fitting plane is similar to the
one described in subsection II-A,

n := arg min
n∈R3
‖n‖=1

‖Mn‖2. (10)

which simplifies to,

n := arg min
n∈R3
‖n‖=1

[
(σ1h1)2 + (σ2h2)2 + (σ3h3)2

]
. (11)

that is minimized for hmin = [0, 0, 1]T ,

n := Vhmin. (12)

Again and in a similar fashion to the previous subsection,
the tail-arrow direction of the plane vector can be correctly
determined using equation (8).

Now, since the best fitting plane for the points P has
been determined, we can determine the circle that best fits
these points in two dimensions, i.e projected into the plane
defined by n. First, the transformation of P to the best fitting
plane coordinates, n, is achieved with the Rodrigues’ rotation
formula,

pn,j = pj cos ρ+ (a×pj) sin ρ+ a(a ·pj)(1− cos ρ), (13)

which rotates P around an axis a of an angle ρ,

a = n× [0, 0, 1]T (14)
ρ = atan2

(
‖n× [0, 0, 1]T ‖,n · [0, 0, 1]T

)
. (15)

The projection of these points into the plane coordinates, XY -
plane, is then simply accomplished by using the x and y
coordinates.

With the projected points into the XY plane - Pn ={
pn,j ∈ R3, j ∈ {1, . . . ,m}

}
, it is straightforward to deter-

mine the best 2D fitting circle. Consider a circle of radius r
and center (xc, yc), which is represented by,

(x− xc)2 + (y − yc)2 = r2 (16)

simplified as a function of x and y, one ends up with,

(2xc)x+ (2yc)y + (−x2c − y2c + r2) = x2 + y2. (17)

We can now transform this into a system of linear first degree
equations using the projected points pn,j = (xj , yj , 0)T to



determine the circle center coordinates and radius. Converting
(17) to matrix notation (Ax = b),

A =

x1 y1 1
...

...
...

xm ym 1

 , x =

 2xc
2yc

−x2c − y2c + r2

 ,

b =

 x
2
1 + y21

...
x2m + y2m

 .
The system is solved as a function of x through a least-squares
fitting approach. The goal is to minimize the square sum of
residual errors ‖b −Ax‖2. It is now straightforward to find
the center and radius of the circle once x is determined.

Having determined the best fitting circle in the plane de-
fined by n, it can be directly transformed to tri-dimensional
coordinates by applying the inverse transformation to (13), i.e.
inverting the axis and angle of rotation.

III. PARAMETER EXTRACTION

With the vector n and the point c determined relative to
the robot base reference frame and for each joint motion,
one can extrapolate the Denavit-Hartenberg parameters using
a geometric approach that consists of two steps:

1) determine the relative coordinate frames that relate each
actuated joint;

2) identify the DH parameters from the set of frames.
The relative coordinate frames (18) can be partially con-
structed from the information gathered thus far.

iTi+1 =

[
x̂i+1 ŷi+1 ẑi+1 pi+1

0 0 0 1

]
, (18)

where

ẑi+1 = ni+1

ŷi+1 = ẑ× x̂

Per definition, the z-axis should equate to the direction of the
joint axis (ni). Similarly, the x-axis can be determined from
the common normal to both direction axes, although this vector
might not be uniquely determined. From the right hand rule
the y-axis is directly determined once the z- and the x-axes are
known. On the other hand, determining the position vector of
each coordinate frame requires some Dual Vector geometrical
operations to calculate the intersection/closest points between
the axis lines.

Each pair of parameters (ni, ci) forms the base to represent
a line in tri-dimensional space. Alternatively, the same infor-
mation can be formulated in Plücker coordinates (S) using the
notation of the moment vector (k),

S =

[
n

c× n

]
=

[
n
k

]
. (19)

Analogous to complex numbers, dual number notation can be
expressed by a sum of two parts: the primary component or
real part (n) and the dual component or dual part (k) [13]:

S = n + ε k (20)

where ε 6= 0 and ε2 = 0. This representation is especially
useful to study the relationship of two straight lines in tri-
dimensional space, Fig. 2. Ketchel and Larochelle [10] pro-
posed an algorithm to classify this relationship based on dual
vector representation for the purpose of collision detection.
Using dual vector algebra to determine the dot and cross

Fig. 2: The relationship between two lines in space can be
parameterized by the shortest distance between lines d (dual
part), and the projected angle between the lines γ (real part)
[10]. The common normal is, ê = ‖n1 × n2‖. The distance
between lines is, d = (c2 − c1) · e. The angle between lines
can be determined from, γ = atan2 (‖n1 × n2‖,n1 · n2).

products of S1 and S2 one can determine the distance (d)
and angle (γ) that relate them,

Ŝ1 · Ŝ2 = (n1,k1) · (n2,k2)

= (n1 · n2,n1 · k2 + k1 · n2)

= n1 · n2 + ε(n1 · k2 + k1 · n2)

= cos γ − ε d sin γ

Ŝ1 × Ŝ2 = (n1,k1)× (n2,k2)

= (n1 × n2,n1 × k2 + k1 × n2)

= n1 × n2 + ε(n1 × k2 + k1 × n2)

= (sin γ − ε d cos γ) ê.

S1 and S2 are either: intersecting, identical, parallel, or
skewed; best explained in the flowchart Fig. 3.

A. Intersecting lines

The simplest case involves intersecting lines, as it logically
follows that the position vector should be located at the
intersection point,

pint =


k1 × k2
n2 · k1

, if n1 · k2 − n2 · k1 6= 0

k2 × k1
n1 · k2

, if n1 · k2 − n2 · k1 = 0
. (21)

While (21) returns a solution for most cases, if any of the lines
passes through the origin of the reference system, its moment
vector becomes null (k = 0) making it impossible to determine
pit. Rajeevlochana et al. [12] proposed a solution for this spe-
cial case, which involves computing an auxiliary intersection
point at an auxiliary coordinate frame and then applying the
inverse transformation to obtain the real intersection point. The
auxiliary coordinate frame (1T1′ ) is found by applying a pure



Fig. 3: The line relationship categorization process.

translation of a unit distance from the reference frame along
the common normal of the vectors n1 and n2,

1T1′ =

[
I3 ‖n1 × n2‖

0 0 0 1

]
. (22)

The computation of the auxiliary intersection point in the
auxiliary reference frame is exactly the same as for the normal
case (23), the only difference being the translation of the
auxiliary center of rotations coordinates (c1′ and c2′ ) and
consequently the auxiliary moment vectors (k1′ and k2′ ).
From the auxiliary system, the actual intersection point is
determined by translating the auxiliary intersection point back
to the original reference system, as given by:

pint =

(1T1′)
−1 k1′ × k2′

n2 · k1′
, if n1 · k2′ − n2 · k1′ 6= 0

(1T1′)
−1 k2′ × k1′

n1 · k2′
, if n1 · k2′ − n2 · k1′ = 0

,

(23)
where

k1′ = k1 + (‖n1 × n2‖ × n1)

k2′ = k2 + (‖n1 × n2‖ × n2)

The relative coordinate frame (18) is now fully defined for
intersecting lines:

pi+1 = pint

x̂i+1 = ‖ni × ni+1‖

B. Identical lines

Identical lines are perhaps the most uncommon of all
cases (see the SCARA robot “Cobra 650” in section IV). No
intersection point or common normal are uniquely determined
and thus it is up to the algorithm to decide both. The relative

coordinate frame (18) may be defined for identical lines
according to:

pi+1 = pi

x̂i+1 = n1′

C. Parallel lines

If the lines are parallel, there is no intersecting point and
there is no unique common normal. In this case, the algorithm
imposes a point through which the common normal should
pass through, for example, the center of rotation of the first
joint (c1) in the studied pair. Using Dual Vector algebra, a line
(S1′) can be drawn from c1 to the closest point along S2,

S1′ =

[
n1′

c1 × n1′

]
(24)

where

n1′ = ‖n1 × ((c2 − c1)× n1)‖ (25)

It is now possible to determine the intersection point between
S1′ and S2 with the method described for intersecting lines.
Note that, if both lines are parallel, the common normal vector
(specified as ê in Fig. 2) is calculated as in (25). The relative
coordinate frame (18) is now fully defined for parallel lines:

pi+1 = pint

x̂i+1 = n1′

D. Skewed lines

Finally, if the lines are skewed we have a two-part solution
representing the closest points along the lines S1 and S2 to
one another,

pint,1 =

(
k2 · e− cos γ k1 · e

sin γ

)
n1 + n1 × k1 (26)

pint,2 =

(
−k1 · e + cos γ k2 · e

sin γ

)
n2 + n2 × k2. (27)

The skewed lines case is specially relevant for robots that have
offsets. Both points are used to compute DH parameters. The
common normal in these cases is determined from the vector
that passes through both points.

pi+1 = pint,2

x̂i+1 = ni × ni+1

Due to the fact that two solutions are possible for the
common normal, accounting for the inverted vector, two
conventions are suggested.

Whenever the common normal is aligned with the previous
frame common normal, ‖x̂i+1 · x̂i‖ = 1, then the direction
of the current common normal should match the previous,
x̂i+1 = x̂i. Else, when considering two inverted common
normals with a non-zero y-component, ‖x̂i+1 · [0 1 0]‖ > 0,
we select the solution with a positive y-component.



E. Extracting DH parameters

Knowing pi+1 and x̂i+1, we completely define the relative
coordinate frame between actuated joints independent from the
robot structure. To avoid ambiguities, the robot base frame is
purposely identical to the system reference frame, implying
that its origin is coincident with the origin of the first relative
coordinate frame (joint 0), and its z-axis aligned with the first
joint rotation axis. With the first relative coordinate frame
assigned, the process of finding the remaining DH parameters
is iterative for each i ∈ {0, . . . , n − 1}. Note that the point
pn (position of the last joint) as well as ẑn are required. This
problem is abbreviated by providing an end-effector position
(pn) as input, and assuming ẑn to be parallel to the last joint
rotation axis (ẑn−1). If not, the final frame (n−1Tn) is also
required as input.

After calculating the relative coordinate frames from the
base to the robot’s end-effector, the four DH parameters used
to describe each transformation are:

1) di, offset from the previous z-axis to the common
normal,

di = (pi+1 − pi) · ẑi (28)

2) θi, angle between the previous to the current x-axis
around the previous z-axis,

θi = atan2 ((x̂i × x̂i+1) · ẑi, x̂i · x̂i+1) (29)

3) ai, distances between origins along the common normal,

ai = (pi+1 − pi) · x̂i+1 (30)

4) αi, angle between the previous to the current z-axis
around the common normal,

αi = atan2 ((ẑi × ẑi+1) · x̂i, ẑi · ẑi+1) . (31)

IV. EXPERIMENT AND RESULTS

The algorithm was first tested and validated in V-REP
(Coppelia Robotics GmbH, Zürich, Switzerland), a robotics
simulator. With an extensive library of robotic models avail-
able, it permitted testing the algorithm with different models
containing varying kinematic structures, and joint types /
dispositions in space. The proposed method was tested with
the following virtual robot models: i) ABB IRB 140, 6-DoF
multipurpose industrial robot; ii) Universal Robot UR3, 6-DoF
collaborative robot; iii) KINOVA MICO, 6-DoF collaborative
robot with a curved wrist; and the iv) Omron Cobra 650, 4-
DoF SCARA robot.

The dimensions of each virtual model were verified against
the available online documentation [14]–[17]. Tests were con-
ducted in a dynamic simulation environment, meaning that
each robot link has a physically modeled body and the joints
connecting the links were driven by a dynamically simulated
motor based on torque/force input and a PID-controller. These
physical elements were handled by the Vortex physical engine
(CM Labs, Montreal, QC, Canada). The physics engine in-
herently introduces noise to the read joint and end-effector
positions, adding to the simulation realism.

The proposed method was then tested in two real robotic
systems, an LBR iiwa R800 (KUKA, Augsburg, Germany)
and a Sawyer (Rethink Robotics - HAHN Group, Bergisch
Gladbach, Germany). Both are lightweight anthropomorphic
serial manipulators designed for sensitive and cooperative
tasks, and tailored for research development.

The KUKA LBR iiwa R800 robot fits in the SRS
(spherical-revolute-spherical) category of redundant manipu-
lators [18]. In each of its 7 revolute joints the robot includes
torque sensors and position encoders. For real-time control
and acquisition of the robotic manipulator joint positions,
the module Connectivity Sunrise.FRI (Fast Robotic Interface)
was used. A client application running in a remote host was
developed to communication with the controller unit (Sunrise
Cabinet) in a local network. Each 5ms the client forwards the
target joint positions to be reached in the next control cycle,
and receives the current joint positions, Fig. 4.

Fig. 4: Example of the robot motion that generates the tracked
point trajectory for the second joint. The thicker lines represent
the position of the tracked point acquired relative to the robot
base frame. The thinner lines represent the best fitting circle
to the trajectories.

The Sawyer robot is an anthropomorphic robot with 7
revolute joints that contrary to the LBR iiwa R800 does not
have a SRS structure. This is due to due to several offsets
distributed along its kinematic chain - 2 at the shoulder, 1 at
the elbow and 1 at the wrist - which make it a particularly
interesting case for DH parameter identification. The Intera
SDK software interface was used to remotely communicate
with the controller using the ROS API [19]. The client
application receives the robot joint positions each 5ms.

The data acquisition process to determine the model param-
eters was similar across all robot models. The robots execute a
series of position controlled movements defined in joint space,
TABLE I. The sequence of motions proceeds iteratively from
the first to the last joint as follows1:

1) the robot executes a PTP (point-to-point) movement to
a set of initial joint positions, θinit;

2) the robot moves one joint to its starting position, θi,start;
3) the position of p starts being acquired;
4) the robot drives the same joint until reaching its end

position, θi,end;

1See video at https://youtu.be/DUqfr Q9n38

https://youtu.be/DUqfr_Q9n38


5) the point acquisition stops and the file is saved under
the identification of the current joint.

The acquired points datasets files serve as the input for
the proposed algorithm implemented in MATLAB2, see an
example in Fig. 5.

Fig. 5: Acquired point trajectories. For each revolute joint, the
motion axis is represented at the center of rotation.

TABLE I: Initial, start and end joint coordinates used during
the trajectory execution. For readibility, the joint positions
are displayed in degrees, except for the Cobra’s J3 that is
displayed in millimeters.

J1 J2 J3 J4 J5 J6 J7

θinit 0 0 0 0 – – –
θi,start -90 -60 -30 -90 -90 -90 –

A
B

B

θi,end 90 60 90 90 90 90 –

θinit 0 0 0 0 – – –
θi,start -90 -115 -145 -90 -90 -90 –

U
R

3

θi,end 90 0 0 90 90 90 –

θinit 180 270 270 180 180 180 –
θi,start 90 180 90 90 90 90 –

M
IC

O

θi,end 270 270 270 270 270 270 –

θinit 0 0 0* 0 – – –
θi,start -115 -135 -200* -160 – – –

C
ob

ra

θi,end 115 135 0* 160 – – –

θinit 90 -90 0 -90 0 90 0
θi,start -35 -105 -70 -110 -70 -35 -70

K
U

K
A

θi,end 105 35 70 30 70 105 70

θinit 90 -90 0 -90 0 90 0
θi,start -35 -105 -70 -110 -70 -35 -70

Sa
w

ye
r

θi,end 105 35 70 30 70 105 70

The proposed algorithm was tested for the robotic ma-
nipulators listed above. The measured DH parameters were
compared to the nominal values and the results are listed in
TABLE II. The parameters obtained have, for the most part,
sub-millimetric and sub-degree deviation to the nominal values
for the virtual and the real robotic manipulators. Two odd
cases occur as a consequence of the undetermination of the
common normals and intersection points in parallel joints of
the MICO and the UR3. The value discrepancy is related to
the d parameter, the offset from the previous z-axis to the

2Repository at https://github.com/neuebot/Kinematic-Calibration

common normal. These differences are related to the non-
continuity of the DH parameters in actuators with parallel, or
almost parallel consecutive joint axes. These discrepancies are
nullified in the next algorithm iteration where the joint axis i
and i+1 intersect, causing no impact in the Forward Kinematic
calculation. Another issue occurred with the UR3 robot, the
algorithm determined the common normal (x-axis) at the 5th
joint to be the inverse of the nominal values. This issue is
solved by providing the final frame (n−1Tn) as suggested in
subsection III-E.

Experiments were conducted with different ranges of joint
trajectories acquired. It is noteworthy that trajectories where
each joint traveled about a third of the total mechanical
range returned parameters more similar to the nominal values.
When the trajectory distance was increased beyond that point,
no noticeable differences were reported. On the other hand,
decreasing the traveled distance below a third of the total
range lead to increasingly dissonant DH parameters from the
nominal ones.

V. CONCLUSION

A novel algorithm for automatic determination of the Stan-
dard Denavit-Hartenberg parameters of serial robotic manipu-
lators was proposed. It determines a correct set of DH param-
eters for several robots with variable kinematic structures and
joint types/dispositions. The method was tested in two real
robots and four dynamically simulated robots, the later using
the Vortex physical engine to reproduce as closely as possible
the behavior of the real robots.

The applicability of the algorithm is twofold. First, if the
end-effector position is determined using the robot controller,
the intrinsic parameters used by the controller can be extracted
as they are usually non-accessible. Second, if an external
sensor (e.g. optical tracker) is used to measure the end-effector
position, one can perform kinematic calibration within the
error margin of the sensor.

The algorithm proved to be valid for the detection of DH
parameters on all tested systems and yet it is affected by
the limitations of the DH notation, i.e. the non-continuity in
actuators with parallel, or almost parallel consecutive joints.
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